Detection of Interactions between Proteins by Using Legendre Moments Descriptor to Extract Discriminatory Information Embedded in PSSM.
نویسندگان
چکیده
Protein-protein interactions (PPIs) play a very large part in most cellular processes. Although a great deal of research has been devoted to detecting PPIs through high-throughput technologies, these methods are clearly expensive and cumbersome. Compared with the traditional experimental methods, computational methods have attracted much attention because of their good performance in detecting PPIs. In our work, a novel computational method named as PCVM-LM is proposed which combines the probabilistic classification vector machine (PCVM) model and Legendre moments (LMs) to predict PPIs from amino acid sequences. The improvement mainly comes from using the LMs to extract discriminatory information embedded in the position-specific scoring matrix (PSSM) combined with the PCVM classifier to implement prediction. The proposed method was evaluated on Yeast and Helicobacter pylori datasets with five-fold cross-validation experiments. The experimental results show that the proposed method achieves high average accuracies of 96.37% and 93.48%, respectively, which are much better than other well-known methods. To further evaluate the proposed method, we also compared the proposed method with the state-of-the-art support vector machine (SVM) classifier and other existing methods on the same datasets. The comparison results clearly show that our method is better than the SVM-based method and other existing methods. The promising experimental results show the reliability and effectiveness of the proposed method, which can be a useful decision support tool for protein research.
منابع مشابه
Enhancing Protein Fold Prediction Accuracy Using Evolutionary and Structural Features
Protein fold recognition (PFR) is considered as an important step towards the protein structure prediction problem. It also provides crucial information about the functionality of the proteins. Despite all the efforts that have been made during the past two decades, finding an accurate and fast computational approach to solve PFR still remains a challenging problem for bioinformatics and comput...
متن کاملPCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences
Protein-protein interactions (PPIs) are essential for most living organisms' process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is still far from complete. In addition, the high-throughput technologies for det...
متن کاملPersian sign language detection based on normalized depth image information
There are many reports of using the Kinect to detect hand and finger gestures after release of device by Microsoft. The depth information is mostly used to separate the hand image in the two-dimension of RGB domain. This paper proposes a method in which the depth information plays a more dominant role. Using a threshold in depth space first the hand template is extracted. Then in 3D domain the ...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملTranslation and scale invariants of Legendre moments
By convention, the translation and scale invariant functions of Legendre moments are achieved by using a combination of the corresponding invariants of geometric moments. They can also be accomplished by normalizing the translated and/or scaled images using complex or geometric moments. However, the derivation of these functions is not based on Legendre polynomials. This is mainly due to the fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2017